HOW LOAD DISTRIBUTED FROM SLAB TO BEAM AS PER YIELD LINE THEORY(AS PER IS 456)


    HOW LOAD DISTRIBUTED FROM SLAB TO BEAM AS PER  YIELD LINE THEORY(AS PER IS 456) 

in this blog, I will tell you how load can be distributed on beam from the slab.  please see the whole blog for a better understanding

 The Yield analysis was proposed by Ingerslev in 1923

SLAB IN ETABS : 

the slab is modeled as a floor object in ETABS.in ETBAS slabs can be modeled as shell or membrane.
if we model slab as  membrane then we can assign  property like one way or two way in our slab .but if we model slab as a shell we cant give property like one way or two way 
for load distribution from slab to beam Emembrane follow yield line theory 

 
TYPES OF SLAB :

1)according to the architect:   ribbed, waffle, and  flat slab 


RIBBED SLAB

 
WAFFLE SLAB


2)according to support  : 

simply supported, cantilever, continuous, etc

3)according to the method of construction  :  

precast, prestressed, cast in situ

4)according to load distribution:  

one way, two way



4a)  ONE WAY : 

1)   if ly /lx≥2 then the slab is one way 
FIG :1





in figure 1   AB, CD, AC and BD are the beams. let's assume in figure 1 ly/lx >2  then the slab load is only distributed on a longer beam AB and CD and the value of the load on beam AB and CD will be the same 
distributed load on beam  AB and CD is given by W kn/m


in one way slab, there is no load distribution  on a shorter span that why on beam AC and  BD there is no load 

  

now the value of the load 'W' is 

RECTANGULAR LOAD VALUE ( rectangular )= P×lx/2 lxin meter)

where P is the total slab load 

P=1.5 ⟦{slab thickness(in meter) × density of concrete(in KN/M3)}+Liveload+ floor finish

P=1.5 ⟦ {(d×25)+L.L+F.F}

where d =slab thickness,
L.L =live load 
F.F= floor finish

now W=P(in KN/M^2) ×lx/2  (lin meter)
lx=shorter span of the beam

W= load on beam in  KN /m 

2 )   if ly /lx=2 then the slab is one way but the load distribution on the beam is different.
triangular load distribution on beam AB,CD,BD,AC 
all load values on the beam are the same
TRIANGULAR LOAD VALUE  'W'=P×lx/3

where P is the total slab load 

P=1.5 ⟦{slab thickness(in meter) × density of concrete(in KN/M3)}+Liveload+ floor finish⟧

P=1.5 ⟦ {(d×25)+L.L+F.F}⟧

where d =slab thickness,
L.L =live load 
F.F= floor finish
now W=P(in KN/M^2 ) ×lx/3 (lin meter)
lx=shorter span of the beam


4b) TWO WAY : 

if     ly/lx <2  then the slab is two way 




in a two-way slab, the load is distributed on the beam as trapezoidal load and triangular load

triangular load ( WTriangle  )  OAC and KBD are the same 

TRIANGULAR LOAD 

1st)    VALUE OF TRIANGULAR LOAD WTriangular  )=P×lx/3

where P is the total slab load 

P=1.5 ⟦{slab thickness(in meter) × density of concrete(in KN/M3)}+Liveload+ floor finish

P=1.5 ⟦ {(d×25)+L.L+F.F}⟧

where d =slab thickness,
L.L =live load 
F.F= floor finish

now WTriangular=P(in KN/M^2 ) ×lx/3  (lin meter)
lx=shorter span of the beam




and trapezoidal load  ( WTrapezoidal  ) OKAB and OKCD are the same 


trapezoidal load





1st) VALUE OF TRAPEZOIDAL LOAD  ( WTrapezoidal  ) =P×lx/3⟦1-1/3k2

where k = ly/lx

where P is the total slab load 

P=1.5 ⟦{slab thickness(in meter) × density of concrete(in KN/M3)}+Liveload+ floor finish⟧

P=1.5 ⟦ {(d×25)+L.L+F.F}⟧

where d =slab thickness,
L.L =live load 
F.F= floor finish
now
( WTrapezoidal ) =P×lx/3⟦1-1/3k2⟧
lx=shorter span of the beam




 these load distributed on a slab 























No comments:

Post a Comment